What have we learnt from RHIC and AdS/CFT?

Edmond Iancu

Institut de Physique Théorique, Saclay & CNRS

May 10th, 2010

Applications

- Why study gluon saturation at strong coupling ??
 - "high parton densities, hence weak coupling!"

- Why study gluon saturation at strong coupling ??
 - "high parton densities, hence weak coupling!"
- This is right indeed, but only for sufficiently high energies

Applications

- Why study gluon saturation at strong coupling ??
 - "high parton densities, hence weak coupling!"
- This is right indeed, but only for sufficiently high energies
- In practice the saturation momentum is not that hard!
 - ullet $Q_s(x) \sim 1$ GeV for a Gold nucleus at RHIC $(x=10^{-3})$
 - it will not exceed 2 to 3 GeV at LHC (forward rapidities)
 - initial conditions for the high-energy evolution are even softer: Gold nucleus: $x_0 \sim 0.01$ and $Q_s^2(x_0) \sim 0.4 \text{ GeV}^2$

QGP at RHIC

Introduction: Why strong coupling?

- Why study gluon saturation at strong coupling ??
 - "high parton densities, hence weak coupling!"
- This is right indeed, but only for sufficiently high energies
- In practice the saturation momentum is not that hard!
 - $Q_s(x) \sim 1$ GeV for a Gold nucleus at RHIC $(x=10^{-3})$
 - it will not exceed 2 to 3 GeV at LHC (forward rapidities)
 - initial conditions for the high-energy evolution are even softer: Gold nucleus: $x_0 \sim 0.01$ and $Q_s^2(x_0) \sim 0.4 \text{ GeV}^2$
- Deep inelastic scattering at HERA: unitarity corrections become important at low virtualities $Q^2 < 1 \text{ GeV}^2$
 - are they to be attributed to saturation? or to confinement?
 - what is the interplay between these two phenomena?

Introduction: Why strong coupling?

• Is the phenomenon of saturation more general than its current theoretical understanding at weak coupling?

- Is the phenomenon of saturation more general than its current theoretical understanding at weak coupling?
- Heavy ion collisions: Saturation is not necessarily restricted to the initial wavefunctions alone!
 - 'jet quenching' is proportional to the gluon distribution in the expanding medium (QGP?) after the collision.

Introduction: Why strong coupling?

- Is the phenomenon of saturation more general than its current theoretical understanding at weak coupling?
- Heavy ion collisions: Saturation is not necessarily restricted to the initial wavefunctions alone!
 - 'jet quenching' is proportional to the gluon distribution in the expanding medium (QGP ?) after the collision.
- RHIC data suggest that this medium is strongly interacting

• Is the phenomenon of saturation more general than its current theoretical understanding at weak coupling?

Applications

- Heavy ion collisions: Saturation is not necessarily restricted to the initial wavefunctions alone!
 - 'jet quenching' is proportional to the gluon distribution in the expanding medium (QGP ?) after the collision.
- RHIC data suggest that this medium is strongly interacting
- How to compute parton distributions at strong coupling?
 - does this make sense ? do they saturate ?

Introduction: Why strong coupling?

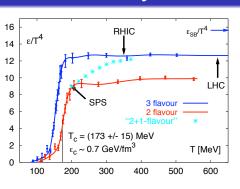
- Is the phenomenon of saturation more general than its current theoretical understanding at weak coupling?
- Heavy ion collisions: Saturation is **not** necessarily restricted to the initial wavefunctions alone!
 - 'jet quenching' is proportional to the gluon distribution in the expanding medium (QGP ?) after the collision.
- RHIC data suggest that this medium is strongly interacting
- How to compute parton distributions at strong coupling?
 - does this make sense? do they saturate?
- Outstanding open problems which might be related :
 - early thermalization, large elliptic flow, large jet quenching

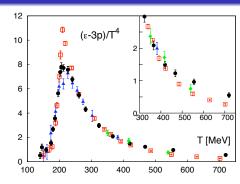
Strong-coupling calculations are notoriously difficult ...
 especially in QCD

- Strong–coupling calculations are notoriously difficult ...
 especially in QCD
- Lattice QCD works only for static quantities (no cross sections, no particle production, no transport coefficients ...)

Applications

Introduction: Why AdS/CFT?


- Strong-coupling calculations are notoriously difficult ... especially in QCD
- Lattice QCD works only for static quantities (no cross sections, no particle production, no transport coefficients ...)
- The 'gauge/string duality' (AdS/CFT correspondence)
 - it works for a conformal 'cousin' of QCD ... $\mathcal{N}=4$ Supersymmetric Yang-Mills (SYM)
 - ullet ... and for strong 't Hooft coupling : $\lambda \equiv g^2 N_c \gg 1$


- Strong-coupling calculations are notoriously difficult ...
 especially in QCD
- Lattice QCD works only for static quantities (no cross sections, no particle production, no transport coefficients ...)
- The 'gauge/string duality' (AdS/CFT correspondence)
 - it works for a conformal 'cousin' of QCD ... $\mathcal{N}=4$ Supersymmetric Yang-Mills (SYM)
 - ullet ... and for strong 't Hooft coupling : $\lambda \equiv g^2 N_c \gg 1$
- What can we learn from AdS/CFT in relation with QCD ?
 - fixed coupling, no asymptotic freedom, no confinement ...
 - one cannot study saturation vs. confinement 😌

Introduction: Why AdS/CFT?

- Strong–coupling calculations are notoriously difficult ...
 especially in QCD
- Lattice QCD works only for static quantities (no cross sections, no particle production, no transport coefficients ...)
- The 'gauge/string duality' (AdS/CFT correspondence)
 - it works for a conformal 'cousin' of QCD ... $\mathcal{N}=4$ Supersymmetric Yang-Mills (SYM)
 - ullet ... and for strong 't Hooft coupling : $\lambda \equiv g^2 N_c \gg 1$
- What can we learn from AdS/CFT in relation with QCD ?
 - fixed coupling, no asymptotic freedom, no confinement ...
 - one cannot study saturation vs. confinement 😌
 - but one can study parton evolution/saturation in the quark-gluon plasma! ©

'Trace anomaly' in lattice QCD

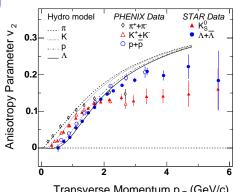
$$\beta(g) \frac{\mathrm{d}p}{\mathrm{d}a} = \langle T^{\mu}_{\mu} \rangle = \mathcal{E} - 3p$$

- \bullet $(\mathcal{E}-3p)/\mathcal{E}_0 \lesssim 10\%$ for any $T\gtrsim 2T_c\simeq 400$ MeV
- $\alpha_s \approx 0.3 \implies q \approx 2 \implies \lambda \equiv q^2 N_c \simeq 10$

QGP at RHIC

- QGP at RHIC
- 2 DIS in AdS/CFT
- 3 Applications
- 4 Conclusions

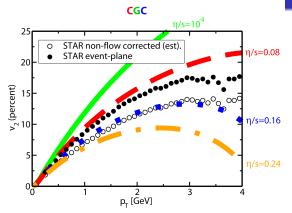
Motivations: Heavy Ion Collisions @ RHIC & LHC



Applications

Elliptic flow

QGP at RHIC


Transverse Momentum p_T (GeV/c)

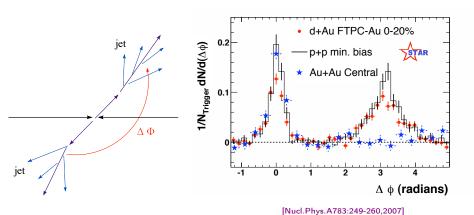
- Non-central AA collision: Particle distribution is not axially symmetric: $dN/d\phi \propto 1 + 2v_2 \cos 2\phi$ ($v_2 = 0$ for 'dust')
- RHIC finds a very large v_2 ! Natural for a liquid : Pressure gradient is larger along the smaller axis (x)

Hydro

QGP at RHIC

0000000

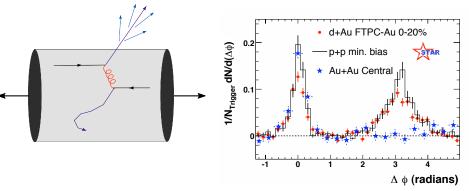
(from Luzum and Romatschke, 2008)


- ullet Hydrodynamical simulations can give estimates for v_2
- ullet Too large viscosity kills v_2 !
- Good fits for very small viscosity/entropy ratio $\eta/s \sim 0.1$

QGP at RHIC

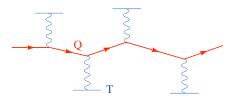
- Viscosity is smaller at strong coupling! (Maxwell, 1860)
- Proportional to the mean free path $~\ell \propto 1/\sigma \sim 1/g^4$
- Weakly interacting systems have $\eta/s \gg 1$ (in units of \hbar)
- AdS/CFT (Policastro, Son, Starinets, 2001)

$$\frac{\eta}{s} \to \frac{1}{4\pi}$$
 when $\lambda \equiv g^2 N_c \to \infty$


- This is the limiting value allowed by the uncertainty principle
- The RHIC value is at most a few times $1/4\pi$! "strongly-coupled quark-gluon plasma" or "perfect fluid"

• Azimuthal correlations between the produced jets:

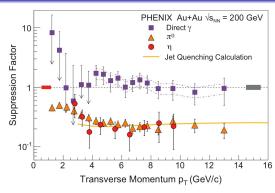
p+p or d+Au : a peak at $\Delta\Phi=180^\circ$


Jet 'quenching' in nucleus-nucleus collisions

- The "away–side" jet has disappeared (for relatively hard transverse momenta: $Q\sim 2\div 10~{\rm GeV}\gg T\simeq 400~{\rm MeV})$ \Longrightarrow strong interactions in the medium
- Perturbation theory seems unable to explain this suppression

Jet quenching in QCD at weak coupling

Medium rescattering \iff transverse momentum broadening



QGP at RHIC

$$\frac{\mathrm{d}\langle k_{\perp}^2\rangle}{\mathrm{d}t} \equiv \hat{q} \simeq \alpha_s N_c \, x g(x, Q^2)$$

- $xq(x,Q^2)$: gluon distribution per unit volume in the medium on the resolution scales $Q^2 \sim \langle k_\perp^2 \rangle$ and $1/x \sim \Delta t_{\rm coh} T$
- If "medium" = QCD plasma at temperature T: we expect quarks and gluons with momenta $\sim T$
- Jet quenching requires parton evolution from T up to $Q \gg T$

How to measure \hat{q} ?

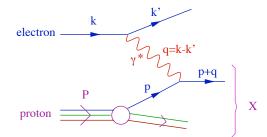
Nuclear modification factor

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

• RHIC data seem to prefer a rather large value for \hat{q} :

$$\hat{q}_{\mathrm{RHIC}} \simeq 5 \div 15$$
 vs. $\hat{q}_{\mathrm{pQCD}} \simeq 0.5 \div 1 \, \mathrm{GeV^2/fm}$

 \implies 5 to 10 times larger than the pQCD estimate!

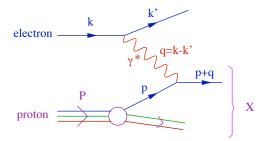

• ... thus suggesting an enhanced parton evolution

Deep inelastic scattering

• How to study parton evolution at strong coupling?

- Compute DIS!
- 2 independent variables:

$$Q^2 \equiv q^{\mu} q_{\mu} \ge 0$$
$$x \equiv \frac{Q^2}{2P \cdot q}$$


- Structure function $F_2(x,Q^2)$: parton distributions for
 - transverse size $\Delta x_{\perp} \sim 1/Q$
 - and longitudinal momentum $p_z = xP$

Deep inelastic scattering

How to study parton evolution at strong coupling?

- Compute DIS!
- 2 independent variables:

$$Q^2 \equiv q^{\mu} q_{\mu} \ge 0$$
$$x \equiv \frac{Q^2}{2P \cdot q}$$

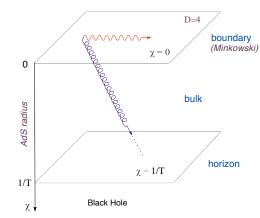
- Structure function $F_2(x,Q^2)$: parton distributions for
 - transverse size $\Delta x_{\perp} \sim 1/Q$
 - ullet and longitudinal momentum $p_z = xP$
- How to compute DIS off a strongly coupled plasma?

QGP at RHIC

The AdS/CFT correspondance (Maldacena, 1997)

- A 'duality' (equivalence) between 2 very different theories
- A gauge theory ($\mathcal{N} = 4$ SYM) in D = 3 + 1 at strong coupling
 - $SU(N_c)$, conformal invariance, fixed coupling, no confinement
- A string theory in D = 9 + 1 ($AdS_5 \times S^5$) at weak coupling
 - AdS_5 : Our physical world $(D=4) \times a$ 'radial' dimension χ
- Strong 't Hooft coupling: $\lambda \equiv q^2 N_c \gg 1$ & $q^2 \ll 1$
 - semiclassical limit of the string theory (gravity)
- $\mathcal{N}=4$ SYM at finite temperature \implies Black Hole in AdS_5
 - a Black Hole has entropy and thermal (Hawking) radiation

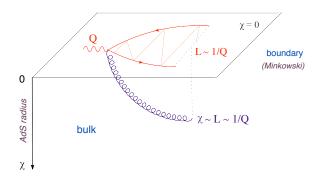
DIS off the Black Hole (Hatta, E.I., Mueller, 07)


- Virtual photon in 4D \longleftrightarrow Maxwell wave A_{μ} in AdS₅ BH
- DIS cross section ←→ absorption of the wave by BH

- Physical world: $\chi = 0$ Black Hole horizon: $\chi = 1/T$
- Maxwell equations in AdS₅ BH

$$\partial_m \left(\sqrt{-g} g^{mn} g^{pq} F_{nq} \right) = 0$$
$$F_{mn} = \partial_m A_n - \partial_n A_m$$

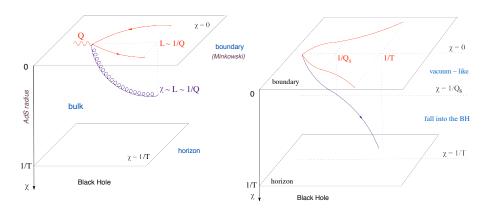
No explicit coupling


QGP at RHIC

The holographic principle

QGP at RHIC

What is the rôle of the 5th dimension?
 Dual to the 'loop' momenta in the usual Feynman graphs



• Radial penetration χ of the space-like 'photon' in $AdS_5 \longleftrightarrow transverse$ size L of the partonic fluctuation on the boundary

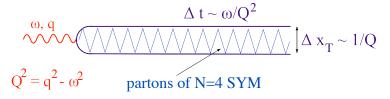
Conclusions

Space-like photon in the plasma

• For low energies, the virtual photon does not 'see' the BH ...

• ... while for large enough energies, it is completely absorbed!

Saturation line

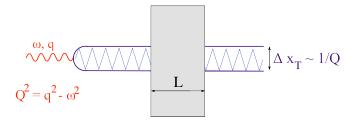

• Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)

DIS kinematics :
$$x \equiv \frac{Q^2}{2\omega T}$$
 and $Q \gg T$

- ullet Large ωT is tantamount to small Bjorken's x
- ullet Critical ('saturation') value $x_s(Q)\simeq rac{T}{Q}\ll 1$
 - $x>x_s\simeq T/Q$: $F_2(x,Q^2)\approx 0$: no partons !
 - $x < x_s \simeq T/Q$: $F_2(x, Q^2) \sim x N_c^2 Q^2$
- Consistent with the energy-momentum sum rule:

$$\int \mathrm{d}x \, F_2(x, Q^2) \, \simeq \, \left[x F_2(x, Q^2) \right]_{x=x_s} \sim \, N_c^2 T^2$$

Physical interpretation of Q_s

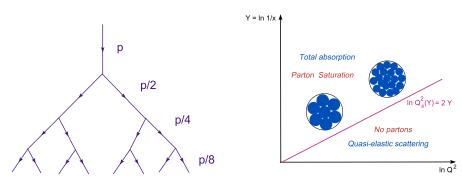

- ullet Plasma acts on the (color–dipole) partonic fluctuation with a force $F\sim T^2$ which is pulling the system apart
- ullet Partons on–shell when mechanical work $(F imes \Delta t) \simeq ext{virtuality}$

$$T^2 imes rac{\omega}{Q^2} \sim Q \implies Q_s^2 \sim (\omega T^2)^{2/3} \sim rac{T^2}{x^2}$$

• One factor of 1/x is just kinematics $(\Delta t \sim 1/xT)$

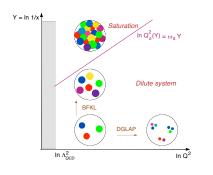
The other one is graviton exchange : $1/x^{j-1}$ with j=2

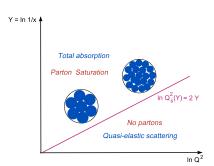
(Mueller, Shoshi, and Xiao, 2008; Avsar, E.I., McLerran and Triantafyllopoulos, 2009; Kovchegov, 2010)


ullet Finite length "nucleus" (shock wave) with size $L \ll \omega/Q^2$

$$Q_s^2 \sim \frac{L\Lambda^3}{x}$$

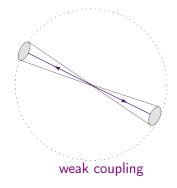
• ... to be compared to $Q_s^2 \sim 1/x^{0.3}$ from fits to HERA data 'BFKL Pomeron' : gluon ladder (gluon spin is j=1) QGP at RHIC

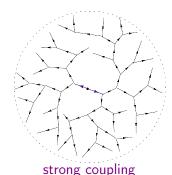

Parton evolution at strong coupling


 All partons branch down to the smallest value of x consistent with energy conservation \implies no pointlike constituents

• The energy of the plasma is carried mostly by the partons along the saturation line: $x_s \simeq T/Q \ll 1$

Parton saturation: weak vs. strong coupling

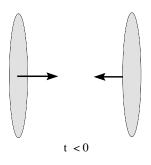


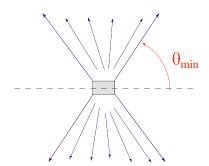

- Weak coupling : $Q_{\bullet}^2(x) \propto 1/x^{0.3}$
 - $Q > Q_s(x)$: 'leading-twist' pdf
 - $Q < Q_s(x)$: $n \sim 1/\alpha_s$ (CGC)

- Strong coupling : $Q_s^2(x) \propto 1/x$
 - $Q > Q_s(x)$: no partons
 - $Q < Q_s(x) : n \sim 1$

No jets at strong coupling!

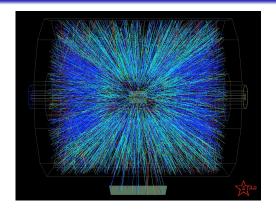
• No jets in e^+e^- annihilation at strong coupling !

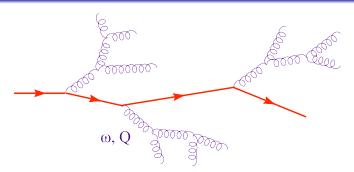



- An isotropic distribution of soft hadrons in the detector (similar conclusions by Hofman and Maldacena, 2008)
- Final state looks very different as compared to pQCD!

No forward/backward jets!

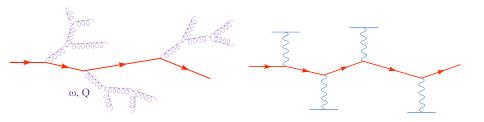
QGP at RHIC


• No large-x partons \Longrightarrow no hard $(Q \gg \Lambda)$ particle production at forward/backward rapidities


• All the energy is carried out by soft particles with $p \sim \Lambda$

Partons at RHIC

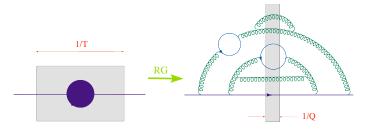
- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
 - forward/backward rapidities: large-x partons


Heavy Quark in a strongly-coupled plasma

- Medium-induced radiation
 - ullet virtual quanta with $Q\lesssim Q_s$ are liberated into the plasma
 - energy loss, momentum broadening

$$-\frac{\mathrm{d}E}{\mathrm{d}t} \simeq \sqrt{\lambda} \frac{\omega}{(\omega/Q_s^2)} \simeq \sqrt{\lambda} Q_s^2 \simeq \sqrt{\lambda} \gamma T^2$$

Heavy Quark in a strongly-coupled plasma



• Different mechanism than in pQCD: radiation vs. rescattering Casalderrey-Solana and Teaney, 2006; Gubser, 2006; Dominguez, Marguet, A. Mueller, B. Wu, B.-W. Xiao, 2008; G. Giecold, E.I., and A. Mueller, 2009 ...

Applications

Why gravity? (Polchinski and Strassler, 2001)

- Why should gravity describe gauge theory at strong coupling?
- OPE for DIS: Partons ←→ 'twist-2' operators
- The operators depend upon the resolution scale

- $\lambda \to \infty$: rapid evolution \Rightarrow all operators are suppressed
- ullet ... with one exception: the energy momentum tensor $T^{\mu
 u}$
 - \implies the effective theory for scattering must be gravity!

AdS/CFT applications to heavy ion collisions

- A very active area of research, with many interesting results
 - new perspectives on old problems: QGP = Black Hole
 - long-range properties (hydro, thermalization, etc) are likely controlled by stronger coupling
 - parton saturation is a universal phenomenon
- ... and some serious limitations :
 - no confinement, no asymptotic freedom
 - ullet so far, no systematic way to improve (finite N_c)
 - high-energy physics looks very different from real-life QCD
- It teaches us the unity of physics
 - quantum field theory, nuclear physics, statistical physics, gravity, hydrodynamics ...